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Abstract

Neural network models, to predict the leachate pH for single batch extraction leaching tests
conducted on Portland cement pastes containing pure compounds, were constructed using existing
data from the literature. The models were able to represent the known non-linear dependency of pH
on acid addition, and were used to show that Cu increases, and Zn and NO3

− decrease, the leachate
pH for addition of 8 meq acid/g dry cement (to achieve a mid-alkaline pH). Ba, Cd, Cr(III), Ni,
Pb, Cl− and OH− had no detectable effect on the acid neutralisation capacity (ANC) of the cement
pastes in the concentration ranges investigated. The laboratory where testing was conducted was
found to be an important predictive variable, which acted as a surrogate variable for laboratory
specific variables that were not adequately reported in the literature, such as cement characteristics,
sample preparation details, and leaching test and pH measurement details. This work has shown
that development of good empirical predictive models for solidified product leachate pH is feasible,
and is limited only by the availability of data. © 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Stabilisation/solidification with Portland cement or other hydraulic binders is often sug-
gested as the best treatment for wastes that can not be reduced or recycled. In a good
solidified product, hazardous contaminants are chemically immobilised, by the alkaline en-
vironment and in the cement hydration products, and physically trapped, by encapsulation
in the hydration products and in the overall bulk of the matrix. The pH and the ability
of a solidified product to neutralise acid are important aspects both because solubility of
contaminants is often pH dependent [1], and because the physical matrix is dissolved and
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Fig. 1. Titration curves illustrating the effect of waste on the ANC of cement paste.

weakened by acid [2]. Thus, acid neutralisation capacity (ANC) should be a key part of any
mechanistic leaching model.

The response of a hydrated cement to acid addition is dependent on the hydration products
formed, and previous work has shown that these are affected by waste components [3]. The
substantial effect that impurities can have on ANC is illustrated by Fig. 1, which shows
titration curves for ordinary Portland cement and a solidified product containing ordinary
Portland cement and metal plating sludge (with pH∼ 8), after 1 year of curing. Per
equivalent mass of cement, the ANC to pH 9, where amphoteric contaminants increase in
solubility, and below which a physically stable matrix can no longer exist, is 30% lower for
the product containing waste than for the pure cement.

Unfortunately, although advances have been made in modelling the pH of pure systems
[4–11] the changes to hydration products caused by the presence of impurities present in
real cements, and contaminants in the wastes, are poorly understood, and it is not possible at
this time to develop a mechanistic model of ANC of solidified products. However, the open
literature contains results of many laboratory studies of leachability, including pH, and ANC.
Whereas each of these studies presently stands on its own, without clear applicability to
new situations, there is the potential to uncover trends in a number of studies taken together
as a body of data, using empirical modelling techniques such as neural network analysis.

Neural network analysis has emerged over the past decade as a practical technique for
identifying patterns in large data sets of many variables. Certain types of neural networks are
useful for the construction of empirical regression models, i.e. for prediction of outputs based
on inputs. Neural networks are most successful when used to model complex systems in
which there is evidence of a relationship between the inputs and outputs, but the relationship
can not be described mechanistically, and for which large amounts of data exist. Prediction
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of solidified product pH and ANC is a good candidate for neural network analysis because
it is clear that pH and ANC must be related to the hydration products formed, which in turn
is related to solidified product composition, but the mechanisms are not understood, and the
literature contains a large number of references with results of experiments to investigate
these properties.

This paper reports on the construction of neural network models to predict the pH of a
single batch extraction tests [12] conducted on products containing Portland cement and
synthetic wastes. The objective of the work was to assess whether the development of useful
predictive models is feasible, and investigate the variables that are important in predicting
pH.

2. Approach

2.1. Neural network analysis

The application of neural network analysis to environmental and civil engineering prob-
lems has been the subject of a number of review articles in the past decade (e.g. [13]), and
detailed information on neural networks is available in texts on the subject (e.g. [14]). The
authors have prepared a glossary as an aid to studying this literature [15].

From the many different types of neural networks that have been developed with differ-
ent objectives, the multilayer perception is particularly suited to regression problems and
was chosen for application in this research. The objective of this type of neural network
analysis is the same as that of polynomial regression, but the mathematical technique is
different. By parallel processing of the inputs, multivariate non-linear functions are mod-
elled as composites of simple non-linear functions (e.g. the sigmoid function), such that
any multidimensional surface can be approximated [14]. The composite function is fitted to
the data by modifying the parameters of the component non-linear functions in an iterative
“training” process, which minimises the error between the predicted outputs and the target
outputs.

To avoid overfitting of the neural network model to the data during iterative training,
a separate data set is used to validate the model at intervals during training. Training is
stopped when the error for the validation set begins to increase. A third set of independent
data is used to test the network after completion of training and validation, to assess its
performance on data to which it has never before been exposed.

For the prediction of solidified product leachate pH in this study, neural network analysis
was conducted using the Trajan Neural Network Simulator [16]. Hundreds of different
neural networks with different combinations of input variables were trained and evaluated
in the course of this investigation. These regression models were evaluated initially on
the basis of their root-mean-square errors for the training, validation and testing sets. The
root-mean-square errors were compared with the interlaboratory experimental error, and
the errors for linear models based on the same variables.

Three forms of visual analysis were conducted to examine the fit of the models.

1. The predicted values were plotted against the measured values, and correlation coeffi-
cients were calculated for the training, validation and testing sets.
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2. Normal probability plots of the residuals, i.e. the differences between the target and
predicted outputs, were created. In normal probability plotting, the cumulative frequency
distribution of the residuals is mapped onto a plot with an ordinate whose scale is
adjusted such that points that are normally distributed fall in a straight line. Normally
distributed residuals are an indication that the model is accounting for all but random
error. The normal probability plots were helpful in identifying outliers and systematic
errors.

3. Response graphs of the predicted outputs as a function of each of the input variables
were plotted. Unlike polynomial models, neural networks do not converge upon a
unique solution. Thus, creating multiple neural networks for the same data set, each
of which may model the system slightly differently, and plotting response graphs for
each, can provide some perspective regarding the uncertainty associated with the
predictions.

2.2. Data collection

The data set for neural network analysis was a subset from the MONOLITH database
of cement-based product properties [17]. Of the approximately 1500 references in the
database, only 13 references reported the leachate pH for single batch extraction tests
for a total of 97 products composed of Portland cement and pure inorganic or toxic metal
compounds [18–30]. Eighteen leachate pH values associated with a 14th reference [31]
were obtained from the authors. ANC measurements for six different Portland cement
control samples were also obtained [32–36]. The data from two references [22,23] were
generated as part of the same project (Neural Network Analysis for Prediction of Inter-
actions in Cement/Waste Systems, NNAPICS) [37], and one of the products from each
were each tested in two other laboratories as part of the project quality control
programme.

The compounds studied in each of these references are summarised in column 2 of
Table 1, with the number of curing temperatures and ages in columns 3 and 4. Columns
5 and 6 show the number of products and pH measurements in each reference. From this
table, it may be observed that Ba, Cd, Cr(III), Cu, Ni, Pb and Zn were each investigated in
more than one reference, as oxides, hydroxides, chlorides and nitrates. As, Ca, Cr(VI), Hg,
Fe, K, Mn, Na, SO42−, and V were not included in the data set for neural network analysis
because they were represented in too few examples. Therefore, the data from [18–20] could
not be used, and only some of the data from [22,23,25,26,28,29,31], were included in the
data set.

Thirty-five of the fifty-one pH measurements from [34] were also eliminated, because
they were for generalised ANC tests using acetic acid, which sets up a buffer at low pH.
Results for acetic acid extractions using less than 2 meq/g wet weight (e.g. the amount used
in the USEPA TCLP), were retained because the extracts remained in the highly alkaline
range.

Table 2 shows the variable ranges for the input and output variables in data set OPCpH1A.
Although the cement composition might be expected to have an impact on the ANC, com-
positional information was not available for all the cements and could not be included as
an input variable. All of the cements were ordinary Portland cements, and the effect of
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Table 1
Summary of data collected for modelling of leachate pH of Portland cement containing pure compounds

Reference Contaminantsa Number of curing Number of
products

pH

Temperature
(◦C)

Time
(days)

[18] CaCl2 1 1 6 30
[19] Na2HAsO4, FeSO4 1 1 1 1
[20] NiO, CdO, HgO, PbO 1 1 3 9
[21] Cd(NO3)2 1 6 5 15
[22] Cr2O3, Fe2O3, PbO, ZnO 1 1 10 123
[23] Cr(NO3)3, Pb(NO3)2,

Mn(NO3)2, Zn(NO3)2

1 1 9 76

[24] Ba(NO3)2, Cd(NO3)2, Cr(NO3)3,
Cu(NO3)2, Ni(NO3)2, Pb(NO3)2,
Zn(NO3)2

1 1 22 230

[25] K2CrO4, Cr(NO3)3 3 3 3 6
[38] Cd(NO3)2, Cr(NO3)3, CuCl2,

Pb(NO3)2, K2SO4, NaCl, Zn(NO3)2

1 1 17 198

[3,15,17,27,37] Ba(OH)2, Cd(OH)2, Cr(NO3)3,
Cu(OH)2, Ni(OH)2, Pb(NO3)2, ZnCl2

1 1 16 176

[28] Na2Cr2O7, CdSO4, NiSO4 1 1 3 3
[29] CrCl3, CrO3 1 1 2 2
[30] NiCl2 1 1 1 1
[31] Cd(NO3)2, CrO3, Na3VO4 3 3 18 18
[32] none 1 1 1 11
[33] none 1 1 1 46
[34] none 1 1 2 51
[35] none 1 1 1 36
[36] none 1 1 1 24

a Not including waters of hydration.

the specific cement type, including the strength class, was confounded with the labora-
tory, which was included as a categorical variable with 15 categories in 1-of-n encoding.
Except for the products from [25,29–31], the references cured and leached the products at
room temperature. Therefore, temperature was also considered to be a part of the laboratory
variable.

The product cement contents ranged from 73.7 to 100% of the total dry product mass
(i.e. before water addition), but were not used in the analysis, as they were correlated with
the contaminant contents. The water content was expressed as a percentage of the mass
of dry cement and the concentrations of the pure compounds, separated into metals and
anions (column 1 of Table 2), were expressed as mg/kg dry cement. The pure compounds
were sometimes added individually, and sometimes in combinations with others. Product
age (i.e. curing time) also had numeric values in the data set.

The different single batch extraction leaching tests conducted on the products were de-
scribed by their liquid-to-solid ratios and acid additions, which were numeric variables.
The type of acid was not included as an input variable, as most of the pH measurements
were for nitric acid extractions; the other acids used in a small proportion of samples
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Table 2
Summary of data set OPCpH1

Variable Added as/with Minimum Maximum Number of levels/
products

Water (% dry cement) 0 100 36/71+ 6

Metals (mg/kg dry cement)a

Ba All but O2− 278 10000 3/12
Cd All but O2− 1000 83000 12/22
Cr(III) All 1000 68000 7/20
Cu All but O2− 1000 10000 4/15
Ni All but O2− 1000 68000 5/14
Pb All 597 29000 7/19
Zn All 1000 151000 6/19

Anions (mg/kg dry cement)a

Cl− All but O2− 1510 139000 4/12
NO3

− All but O2− 598 121000 37/44
OH− All but O2− 69 2070 14/15
O2− Cr(III), Pb, Zn 1610 49000 4/4

Age (days) 0 365 18/71+ 6
Liquid-to-solid ratio

(g/g dry cement)
0.45 41 211/71+ 6

Acid addition
(meq/g dry cement)

0 31 620+ 133/71+ 6

pH 0.01 14.0 620+ 133/71+ 6

a Minima and numbers of levels do not include 0-addition controls.

were acetic, hydrochloric and sulphuric. The liquid-to-solid ratio was expressed as the
ratio of the total mass of water, including the mixing water, to the dry mass of cement.
Based on the characteristics of the tests, it was assumed that steady-state concentrations
were attained in all the leachates, i.e. test duration, particle size and agitation were not
included as separate variables, although in any case they were part of the “laboratory”
variable. The acid addition was expressed as milliequivalents of acid per gram of dry ce-
ment.

Data set OPCpH1 contained 620 data points from references that studied the effects of
pure compounds on ANC and 133 additional data points for ordinary Portland cement paste
controls from other references, i.e. a total of 753 data points for 16 input variables. Testing
was conducted using all 44 data points from [23], six data points from [31], four data points
from [25], two data points from [28], two data points from [29,30], 21 data points from [33]
and 34 data points selected at random from the remaining references. The remaining 527
data points were used in training.

Based on the results from initial network analysis, a subset of OPCpH1 was used in
continued model development, which included only the data points with target pH values
>9. This reduced the data set to 515 points and resulted in use of a subset of 72 of the
previous points for validation, and a subset of 73 of the previous points for testing, leaving
370 training data.
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3. Results and discussion

The performances of the best neural network models constructed for prediction of pH
with data set OPCpH1 are summarised in Table 3. The number of “hidden cells” in column
4 is the number of simple non-linear multidimensional (sigmoid) functions that have been
superimposed by the neural network to create the model.

3.1. General observations

In general, the root-mean-square errors of the neural networks in Table 3 are lower, and
the correlation coefficients are higher, than for the linear models, which indicates that the
neural networks are able to model non-linearities that cannot be modelled with a linear
model. This is not a surprising result, because of the obvious non-linear dependence of pH
on acid addition, whereby the curve of pH as a function of acid addition for a cement-based
product appears as an initial series of plateaus at characteristic pH values for the alkaline
solid phases, followed by a steep drop in the pH caused by the depletion of these phases at
high acid additions.

A plot of the predicted versus target pH values for the best network constructed using
all the variables and the full range of data, OPCpH1-1 (Fig. 2), shows good predictions at
high and low pH, but relatively poor predictions for pH values between 2 and 10, which
led to the appearance of strong tails in the normal probability plot (not shown). Below
pH 10, the main solid hydration products have been depleted and small changes in acid
addition have a proportionally larger affect on pH than in the alkaline region where acid
additions are neutralised by the solid phases and the pH changes only gradually. Accordingly,
small errors in acid addition have a greater effect once the solid phases are depleted, and

Table 3
Summary of neural network models constructed for data set OPCpH1

Model code Inputs Hidden cells Root-mean-square errora Correlation coefficienta

Number Typeb Tr V Te Tr V Te

Linear 16 1 – 1.61 1.70 2.E+14 0.92 0.92 0.23
Linear 16 2 – 0.27 0.24 1.E+14 0.97 0.98 −0.14
OPCpH1-1 16 1 3 0.73 0.87 1.28 0.98 0.98 0.94
OPCpH1-2 16 2 7 0.23 0.18 0.58 0.98 0.99 0.88
OPCpH1-3 10 3 11 0.23 0.18 0.65 0.98 0.99 0.87
OPCpH1-4 10 3 10 0.22 0.19 0.62 0.98 0.98 0.87
OPCpH1-5 10 3 4 0.24 0.19 0.53 0.98 0.99 0.92
OPCpH1-6 10 3 7 0.24 0.19 0.50 0.98 0.98 0.91
OPCpH1-7 10 3 3 0.21 0.19 0.45 0.98 0.98 0.93
OPCpH1-8 2 4 2 0.24 0.20 0.50 0.98 0.98 0.91
OPCpH1-9 1 5 13 0.52 0.46 0.54 0.90 0.90 0.90
OPCpH1-10 6 6 6 0.23 0.18 0.51 0.98 0.99 0.91

a Tr: training set; V: validation set; Te: test set.
b Input type: (1) all, for full data set; (2) all, with pH> 9; (3) all but Ba, Cd, Pb, Cl−, OH− and O2−, with

pH > 9; (4) laboratory and acid addition only, with pH> 9; (5) acid addition only, with pH> 9; (6) laboratory,
acid addition, water content, Cu, Zn, and NO3

−, with pH > 9.
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Fig. 2. Target vs. predicted pH values for neural network OPCpH1-1, based on all input variables, for full data set.

the result is that the variance of the pH measurement is not constant over the full pH
range. This is demonstrated clearly by the plot of the variances measured in the NNAPICS
quality control programme [17,37] (Fig. 3); the interlaboratory standard deviation calculated
for pH > 9 was 0.28; that for pH< 9 was 9.0. Also, an early study of the properties
of cement-based solidified wastes [49] found the following comparable interlaboratory

Fig. 3. Variance as a function of pH for NNAPICS quality control data.
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Fig. 4. Normal probability plot of residuals for neural network OPCpH1-2 based on all input variables, for data
with target pH> 9.

standard deviations for pH:

1. 0.51–1.0, for a distilled water extraction with a median pH of 12;
2. 0.77–1.2 for the USEPA TCLP with a median pH of 9; and
3. 1.2 for the ANC test (over the entire pH range).

Thus, a normal distribution of residuals over the full pH range can not be expected.
For this reason, neural network development was continued with the data for pH measure-

ments >9 only. The normal probability plot of the residuals for the best network constructed
using all the variables (OPCpH1-2) is shown in Fig. 4. A much smaller systematic error was
visible in this plot than in the normal probability plot for OPCpH1-1. Since very alkaline
pH solutions are prone to carbonation from the atmosphere, and most solid phases have
been depleted by pH 9, it is possible that the variance associated with the pH measurement
is in fact slightly greater at either end of the training range. These phenomena could be
responsible for the observed systematic error.

Fig. 4 also shows a number of outliers for new test data, and for one of the training
data points, which have been labelled with their identifying indices. Training data point 236
(from [24]) had a target pH of 9.04, near the end of the training range, and is probably simply
a point with an unusually high measurement error. For the new test data, one of the primary
causes of poor predictions is the strong dependence of the network on the laboratory as an
input variable. Since all of the new test data points were from laboratories unfamiliar to the
network, it is encouraging that many of them were well-predicted, rather than surprising
that some were not. Those that were poorly predicted tended to have strong differences from
the training set: data points 185–187 [31] had estimated product water contents, elevated
curing temperatures, and were tested using acetic acid at liquid-to-solid ratios that were
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out of the training range; data points 419–422 [25] were obtained at elevated curing and
leaching temperatures; data points 601 and 602 [29,30] had liquid-to-solid ratios that were
out of the training range, and also contaminant concentrations that were out of the training
range, as did 599 and 600 [28]. These outliers demonstrate that neural network models are
poor at extrapolating outside of the training range, and are responsible for the higher overall
root-mean-square error on the test set; the remaining test data were well-predicted.

The differences between the root-mean-square errors for the training and validation sets
indicate that the data set is relatively small to describe the system.

For the networks constructed using the full data set, as well as those constructed using
only data with target pH> 9, it was noted that the root-mean-square errors on the training
and validation sets were lower than the relevant interlaboratory standard deviations from the
NNAPICS quality control programme and previous investigations. There are two possible
explanations for this.

1. The interlaboratory standard deviations from the NNAPICS quality control programme
and the previous investigations were measured for products containing real wastes,
whereas OPCpH1 contained only data from products containing pure compound ad-
ditions. The interlaboratory reproducibility of the ANC measurements for products con-
taining pure compounds may be better than that for products containing real wastes
because the variability of the starting material was lower.

2. The neural networks may have overfitted the data. This would also provide another
explanation of the systematic errors observed in the normal probability plots.

The latter explanation was judged to be unlikely on the basis that:

1. the test data were predicted as well as the training and validation data (with the previously
explained exceptions);

2. dependence of the residuals on the pH accounted for the systematic error; and
3. a progression in the shape of the normal probability plot can be observed as more

input variables are added from Fig. 5 (acid addition only), to Fig. 6 (acid addition and
laboratory), to Fig. 4 (all input variables). The same shape is observed in each, but the
spread of the distribution becomes smaller.

3.2. Effects of input variables

Sensitivity analysis of OPCpH1-1 and -2, and a group of four additional neural networks
constructed with the same input variables for each, was conducted by observing the ef-
fect of omission of each of the input variables in turn on the root-mean-square error [17].
The results suggested that acid addition was the most important variable for the prediction
of pH, but the performance of neural network OPCpH1-9 (Table 3 and Fig. 5) based on
acid addition only showed that the other input variables improved the pH predictions sub-
stantially. Sensitivity analysis also showed that the laboratory was an important predictive
variable. Such a result might be expected because of the many experimental variables that
would remain consistent within a laboratory, but might vary from one laboratory to another,
such as: cement type, protection of samples from carbonation during batch preparation, cur-
ing, drying and comminution, drying temperature, and particle size, leaching vessel type,
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Fig. 5. Normal probability plot of residuals for neural network OPCpH1-9 based on acid addition only, for data
with target pH> 9.

solid/leachant contact time, leaching reagent purity, acid addition mechanisms, agitation,
solid/leachate separation procedures and pH electrode maintenance and calibration for the
leaching tests. Liquid-to-solid ratio, curing time and water content were also identified as
important predictive variables.

Fig. 6. Normal probability plot of residuals for neural network OPCpH1-8 based on acid addition and laboratory,
for data with target pH> 9.
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Response graphs were constructed for the groups of five networks trained with the same
data as OPCpH1-1 and -2, to better evaluate the effects of the numeric variables on the pH
predictions [17]. For each group, the maximum and minimum pH values predicted by the
five networks were plotted for an acid addition of 8 meq/g dry cement, to try to achieve a
mid-range alkaline pH, as each input variable was varied over its range in the data set in 10
steps. For each plot, the values of the other input variables were held constant at their mean
concentrations.

The response graphs (not shown) showed:

1. high variability of the pH predictions on the basis of curing time and liquid-to-solid ratio;
2. a decrease in the median pH of about half a unit going from a water-to-cement ratio of

0–1;
3. no effect of Ba, Cd, Pb, Cl− or OH− over the concentration ranges investigated;
4. small effects for Cr(III), Cu, Ni, Zn and NO3−, but without agreement between the two

groups of neural networks; and
5. increasing variability of the pH predictions as a function of the O2− and Zn concentra-

tions.

As would be expected, both groups of response graphs confirm the importance of acid
addition for pH prediction. The constant acid addition of 8 meq/g dry cement used to generate
the response graphs for the other input variables resulted in a median pH of 11.6 for the
networks constructed using the full data set and 11.4 for the networks constructed with
data for target pH values >9. Table 4 shows the equilibrium pH values of the pure phases
present in cement-based products. Comparison with the tabled values suggest that at the
median predicted pH values, calcium hydroxide and high Ca:Si ratio calcium silicate hydrate
(C–S–H) would have been depleted. Given the uncertain stability and unknown effects of the
numerous solution components and solid phase substitutions (caused by both manufacturing
impurities in the cements, and the added contaminants) on the equilibrium, lower Ca:Si
ratio C–S–H, ettringite, monosulphate and hydrogarnet may or may not have dissolved at
this pH, and low Ca:Si ratio C–S–H, gehlenite hydrate, hydrotalcite and brucite will not
have dissolved. Thus, a predicted decrease in the pH for an acid addition of 8 meq/g dry
cement may be due to a reduction in the quantity of calcium hydroxide or high Ca:Si ratio

Table 4
Equilibrium pH values for pure cement phases

Pure phase pH Reference

Calcium hydroxide, Ca(OH)2 12.5 [40]
High Ca:Si, C–S–H 12.3 [41]
Intermediate Ca:Si, C–S–H 11.9 [41]
Ettringite, 3CaO·Al2O3·3CaSO4·32H2O 9.8–12.8 [42–47,5]
Monosulphate, 4CaO·Al2O3·CaSO4·12H2O 12 [42]
Hydrogarnet, 3CaO·Al2O3·6H2O 10.5–12.0 [5,40]
Low Ca:Si, C–S–H 9.9 [41]
Gehlenite hydrate, 2CaO·Al2O3·SiO2·8H2O 9.2–11.2 [5]
Brucite, Mg(OH)2 10.3 [48]
Hydrotalcite, 4MgO·Al2O3·10H2O 6.8–9.3 [5]
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C–S–H, and/or lower quantities of lower Ca:Si ratio C–S–H, ettringite, monosulphate and
hydrogarnet, and/or a decrease in the equilibrium pH of these latter phases, caused by the
pure compound addition. The converse is true for an increase in the pH predicted for this
acid addition.

Since the sensitivity analysis and response graphs for the networks developed using all
input variables agreed that Ba, Cd, Pb, Cl− and OH− had no predictive value, these vari-
ables were omitted as inputs for subsequent neural network development. O2− was also
omitted, as examination of the data set revealed its presence at higher concentrations to
be correlated with higher concentrations of Zn, Pb and Cr(III). Because of different as-
signments of responsibility by the different networks used to generate the response graphs,
this correlation was responsible for the increase in model uncertainty observed as a func-
tion of concentration for Zn and O2−. Continued neural network development was also
restricted to the data set with target pH values >9, in part because it was assumed that the
better interlaboratory reproducibility in this range would make it easier to identify effects.
However, acid neutralisation behaviour in the alkaline range was also of greater interest,
because the stability pH values for the phases found in cements (Table 4) show that the
solid matrix will have disintegrated at pH< 9. Thus, prediction of lower pH values is
of little importance for solidified products, although pH< 9 is common in the natural
environment.

The normal probability plot of the residuals for the best neural network constructed with
the selected input variables, OPCpH1-3, in Fig. 7 is very similar to that for OPCpH1-2
constructed using all the inputs (Fig. 4), and the performance indicators in Table 3 are
equivalent. On the other hand, the normal probability plot for the best network constructed
using only the laboratory and acid addition as inputs, OPCpH1-8 (Fig. 6), was less smooth,

Fig. 7. Normal probability plot of residuals for neural network OPCpH1-3 based on selected input variables, for
data with target pH> 9.
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and its performance was slightly worse. Together, these observations suggest that although
acid addition and the laboratory may be the most important predictors of leachate pH, the
other selected input variables have some predictive value.

Response graphs for the five best neural networks constructed with selected input vari-
ables, OPCpH1-3 to -8, are shown in Figs. 8–10. The observations noted above for the
networks constructed with all the input variables are confirmed to a large extent. In the
cases of curing time and liquid-to-solid ratio, model uncertainty remained higher at either
end of the ranges of these variables. Since the liquid-to-solid ratio for all tests in a particular
laboratory remained the same, this variable was confounded with the laboratory variable,
and the uncertainty associated with it is a consequence of different apportioning of respon-
sibility between the laboratory and liquid-to-solid ratio by each of the neural networks used
to plot the response graphs. Nevertheless, it is interesting to note a drop in the median
pH of 0.3 units between a liquid-to-solid ratio of 0.5 (for pore-water expression) and 25.
Dilution of an unbuffered solution with pH 11.4 by a factor of 50 would reduce the pH to
9.7. However, in these systems the pH is controlled by dissolution of the solid phases, so a
large drop in pH would not be anticipated, and the observed reduction in median pH of 0.3
units could be related to a decrease in the ionic strength. Curing time was also somewhat
confounded with the laboratory, so that a separate effect on pH as a function of curing
time could not be discerned. In theory, continued hydration over time might be expected to
increase ANC. However, this effect might be partially or wholly offset by carbonation of
inadequately protected samples over the curing period.

The decrease of the predicted pH as the water-to-cement ratio increases from 0 to 1 is
interesting. It must be remembered that acid addition has been expressed as milliequivalents
per gram of dry cement to be able to compare all products on an equal basis. Closer exam-
ination of the data shows that the great majority of the water-to-cement ratios lie between
0.3 and 0.5, so the definition of the data space at higher and lower water-to-cement ratios
is poor. Only a single study investigated a range of water-to-cement ratios [24]. This study
did show a decrease in ANC with increasing water content and is largely responsible for the
behaviour of the model. Knowing this still leaves open the question of why this particular
study might have found such a result, but the reasons are likely to be operational rather
than related to changes in the hydration chemistry. For example, examination of the data
from this study shows the moisture content to have been measured at 29 days, whereas
the ANC of the product was tested at 110 days. If the product was not dried thoroughly
before ANC measurement, the test would have contained a smaller amount of cement per
mass than assumed in the calculations, and this effect would have been greater for higher
water contents. An alternative explanation is that the products were exposed to carbona-
tion, which could have affected the higher water content products to a greater extent. The
more limited opportunity for carbonation of several products in which unhydrated cement
was added directly into the leaching vessel which was then immediately sealed, i.e. which
corresponded to a water-to-cement ratio of 0 [33,34,38], may also have resulted in a higher
pH, which contributed to the modelling results.

As regards the contaminants, the response graphs showed no effect for Cr or Ni. Predicted
pH increased by 0.2 over 0.15 mol Cu/g dry cement, and decreased by 0.5 over 2 mol NO3

−/g
dry cement. Increasing the Zn concentration from 0 to 2.3 mol/g dry cement decreased the
pH by 0.2 units.
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Fig. 10. Plot of predicted pH as a function of (a) Zn and (b) NO3
− concentrations at an acid addition of 8 meq/g

dry cement for neural networks OPCpH1-3 to -8.

Thus, it appears that neural network analysis has tentatively identified that Cu increases,
and Zn and NO3− decrease, ANC to a pH of approximately 11.4. Response graphs for
a final group of networks trained with only acid addition, laboratory, Cu, Zn and NO3

−
indicated the same trends [17]. Equivalent performance by the best of these networks,
OPCpH1-10 (Table 3) suggests that the omitted variables really did not have a significant
effect. Likewise, the slight degradation in performance when Cu, Zn and NO3

− were left
out of neural network OPCpH1-8 suggests that they do have a real effect. At the same time,
these conclusions can not be absolutely firmly stated, since the observed differences are
small and result in pH changes of only the order of the interlaboratory standard deviation,
over the concentration ranges investigated.

It is interesting to note that one of the studies that contributed data for neural network
analysis found that ZnCl2 and Cr(NO3)3 decrease ANC [27]. This study also showed small
effects for Cu and Pb, and indicated the possible presence of interaction effects between
Zn and Cr as did another study [38]. Interaction effects between contaminants were not
investigated in the work reported here, as even the main effects were difficult to identify.

For the studied contaminants, the literature indicates that Cr(III) acts as an accelerator
and is taken up into the structure of C–S–H, whereas the other metals are thought to act as
retarders by forming hydroxide hydration barriers around hydrating cement grains, and are
not quantitatively taken up into C–S–H. It is thought that Cl− is taken up into monosulphate,
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and literature on the subject of NO3
− is scarce [39]. Whereas, any of these interactions could

be anticipated to have effects on pH and ANC, neural network analysis indicates that any
effects of the pure compounds are quite small. A significant difference between adding pure
compounds and real wastes is that the acid/base contribution of the pure compounds in the
range investigated is low, whereas wastes are added in large enough quantities that acidic
wastes may consume ANC while alkaline wastes may contribute to it.

4. Conclusions

Neural network analysis was able to represent the known non-linear dependency of pH
on acid addition, and indicated that Cu increases, and Zn and NO3

− decrease, the pH
of the leachate, for addition of 8 meq acid/g dry cement. Ba, Cd, Cr(III), Ni, Pb, Cl−
and OH− had no detectable effect on the ANC of the cement pastes in the concentration
ranges investigated. Laboratory-specific variables, such as cement characteristics, sample
preparation details, and leaching test and pH measurement details, were not well-reported in
the literature, but the laboratory was used as a categorical surrogate for these input variables,
and found to be important for making successful predictions. It was clear that the variance
of the pH measurement is dependent on the pH value, and the model error over the pH range
was found to be similar to the experimental error.

This work has shown that development of good predictive models for leachate pH of
cement-based products is feasible, and is limited only by the availability of data regarding
laboratory-specific variables, as well as wider concentration ranges and combinations of
variables.
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